

June 10, 1957. M.A. Pesando, Chief Project Desearch Engineer. W. Kuzyk, Senior Project Research Engineer.

Merewith attached is Reconnaissance Arrow Drag and Power

Summary.

No. LOT. Lot Longe

cc: R.F. Marshall.

W. Kuzyk.

HAISSANCE ARROW DRAG AND POWER SUMMARY

by W. Kuzyk

1.C STRODUCTION

The design target of the reconnaissance version of the Avro Arrow Mk. 3 fighter was chosen as M = 2.5 at 90,000 ft. altitude. This choice requires a considerable reduction in both trim and induced drag as well as doubling of power at altitude. This greatly improved performance capability provides the reconnaissance airplane with a very useful "dash" for (1) evading potential enemies and (2) for positioning prior to the observance and photographing of target areas.

The configuration proposed for a reconnaissance version is shown on figure 9, and the pertinent data are as follows:

Geometry

Wing Area	$Sw = 1410 ft^{2}$
Canard Area	$Se = 32 ft.^2$
Aspect Ratio	AR = 2.65
Side Fins	$S_{SF} = 90 \text{ ft.}^2 \text{ (total)}$
Fin	$SF = 170 ft_{0}^{2}$
Rudder	$S_R = 50 \text{ ft.}^2$
Ailerons	$S_R = 50 \text{ ft.}^2$ $S_A = 100 \text{ ft.}^2 \text{ (total)}$

Weight Estimate

Mk. II	O.W.E. (incl.arm.&cameras))44.214	1b.		
	Wing Tip Ramjets				
		200			
	Additional Wing Area				
	(155 ft.^2)	750	lb.		
	Side Fins (90 ft. ²)	400			
	Additional Rudder				
	(12ft.^2)	50	lb.		
Reconn	aissance Arrow - O.W.E.			49,214	lb.
Le accession of					
	Tues Internal Fuel	19,438	lb.		
	lus Outer Wing	6,000	lb.		
				25,438	1Ъ.
	Arrow - Full In	nternal	Fuel		
	and the second secon				
Long R	ange Reconnaissance Arro	W			
	Plus One External Tank	- Fuel	5,000	1b.	
	Plus Two External Wing	Tanks			
		- Fuel	5.000	1h.	

- Fuel 5,000 lb. Plus Tank Structure <u>1,000 lb. 11,000 lb.</u>

Total 85,652 lb.

Undercorriege Development

From the foregoing it is felt that the probable high T.O. weight will warrant some development of the undercarriage. In this regard it is highly recommended that a design stress analysis be carried out on two design proposals.

- (a) increasing capacity of present U/C design (Mk. II)
- (b) Check the feasibility of the addition of outriggers at the wing tips

to cater for an increased normal T.O. weight of the order of 90,000 lb.

- 2 -

Location of Canard

The csnard has been tentatively positioned so that that is minimum interference to the pilot's vision and to the inter-(Note that at altitude the fuselage angle of attack is around 10°.) However further study is required.

at total drug of this revelop at 8.4 .92, 22,000 to 7,000 lb. as compared to 5,000 lb. I at the same speed, eltitude, and weight and Sourcease is trug foring a relevance "asymes

A drag analysis of the Avro Arrow Mk. II showed that at M = 2.5, 50,000 ft. altitude and a W/P = 250,000 in.² the drag components to be

- 3 -

ender and an and a second and a second	$D/P in.^2$	<u>D 1b.</u>	% of Total
Profile Drag Induced Drag Trim Drag	16,600 45,200 28,200	4,080 11,080 <u>6,960</u>	18.5 50 31.5
	90,000	22,120	

The profile drag is a "fixed item" and any improvement of it was unlikely. Therefore the reduction is more probable in induced and trim drags. Increasing the wing area from 1225 ft.² to 1410 ft.² and the addition of the canard resulted in the following:

	$D/P in.^2$	<u>D 16.</u>	% Total	over Mk. The	
Profile Drag Induced Drag Trim Drag	19,900 28,250 <u>5,600</u>	4,900 6,950 <u>1,230</u>	37.5 5 3. 0 9.5	+20% -37% -82%	
	53,750	13,080		-41%	

The separate effects of increasing the wing area, and addition of a canard is clearly shown in fig. 7. It follows then that modification of the Avro Arrow for increased speed and altitude should include a canard. The trim effect of the canard elevator combination is shown in fig. 6. Point "A" shows the trim drag to be 28,800 x .246 psi = 7,100 lb. for zero canard effect and a required -26° elevator angle, however utilization of the canard (see point "B") to the extent of its buffet limit results in a trim drag of 5600 x .246 psi = 1230 lb. for \ll_c canard = +23° and δ_c elevator = -8° - a reduction of 5,870 at M = 2.5, 90,000 ft. W/P = 250,000.

It is notewarthy that total drag of this version at M = .92, M 101 First and W/P 22,000 is 7,000 lb. as compared to 6,660 lb. in the Avro Arrowsk. II at the same speed, altitude, and weight and the is not too cont an increase in drag during a subsonic "cruise

weight of 61,400 lb. requires a total of 13,000 lb. thrust, with 7,000 lb. being contributed by the Iroquois engines with after-burning, and the balance of 6,000 lb. by some other power source. Recommended on fig. 9 are wing tip ramjet pods.

3.0 POWER AND ADDRESS.

The additional 6000 lb. thrust may be obtained by several different combinations of power plant and fuels, some of which are listed below:

- 4 -

	ACTIVE DESIGNATION		Fuel			
		Turbojet	A/B	Ramjet	Rocket	
1	(Turbojet + A/B) + Ramjet	JP4	JP4	JP4		
2	(Turbojet + A/B) + Pamjet	JP4	JP4	Pentaborane		
3	(Turbojet + A/B) + Ramjet	$JP4 + H_20$	JP4	JP4		
4	(Turbojet + A/B) + Ramjet	JP4 + H ₂ 0	JP4	Pentaborane		
5	(Turbojet + A/B) + Rocket	JP4	JP4		8548-0-	

Some of the characteristics of each combination are tabular Table 1.following.

The fuel consumed during a dash of M 2.5, 90,000' alt. and for a Reconnaissance Arrow shows that combinations (1) and (2) best (see fig. 10). Since combination (2) involves the use of fuels and that the gains afforded by the use of High Energy fuels are not great it is felt that combination (1) is the most suitable for the Reconnaissance Arrow, and this combination is shown in fig. 9.

The use of high energy fuels such as pentaborane results in a decrease of ramjet frontal area from 14.1 ft.² to 11.9 ft.² (4.25 to 3.9' dia.) and a reduction of specific fuel consumption from 3.15 to 2.57. Somewhat lesser gains are to be realized from the use of a Boron Slurry.

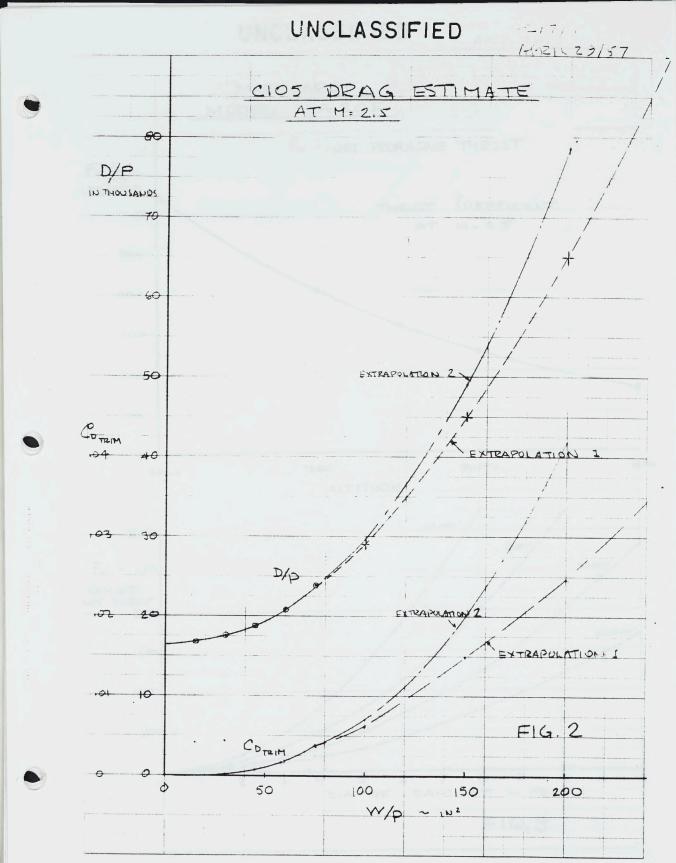
Water injection is an easy way of "souping up" existing power plant and intake combinations. However, this feature is somewhat curtailed by the large increase in specific fuel consumption, e.g. the recommended **Decomplements** power plant combination would use at least $2\frac{1}{2}$ times nore liquid fuelder weight) when water is injected into the turbojet interes to the extention point.

URTHER INVESTIGATIONS

The indications of this note are that a M = 2.5, 90,000' altitude Magnatizations is feasible within the present state of art. Howmediately established whether there is a need for a recommissance of tactical bomber version of the Arrow via Market Research. Further, power investigations are also recommended with an

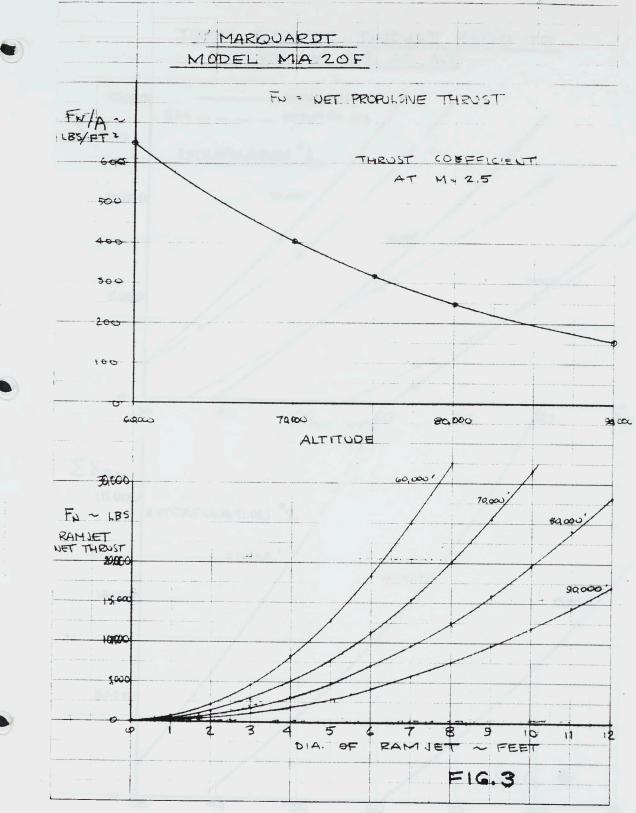
effort to improving the range potential of the Arrow.

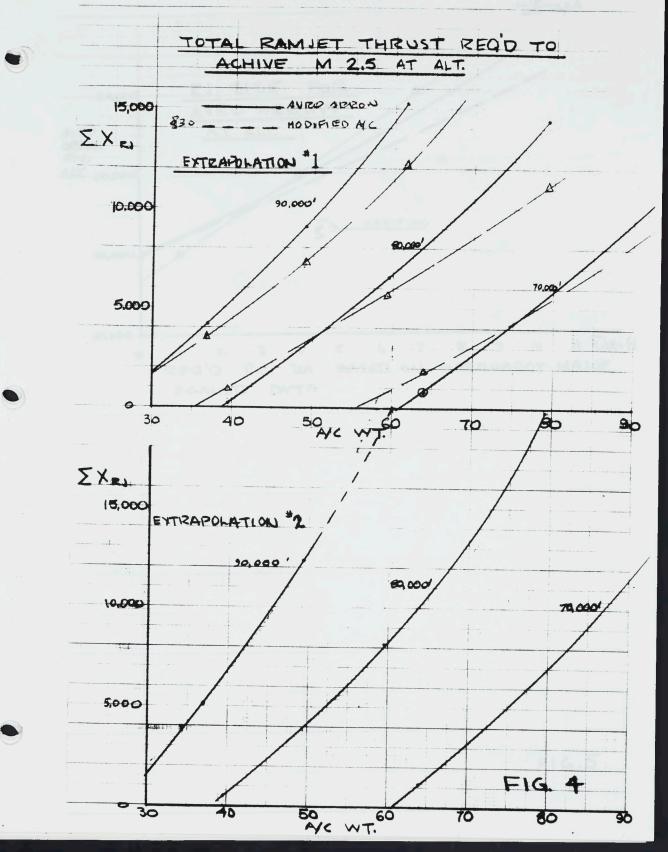
With respect to the Reconnaissance Arrow two plausible locations for reconnaissance equipment are:

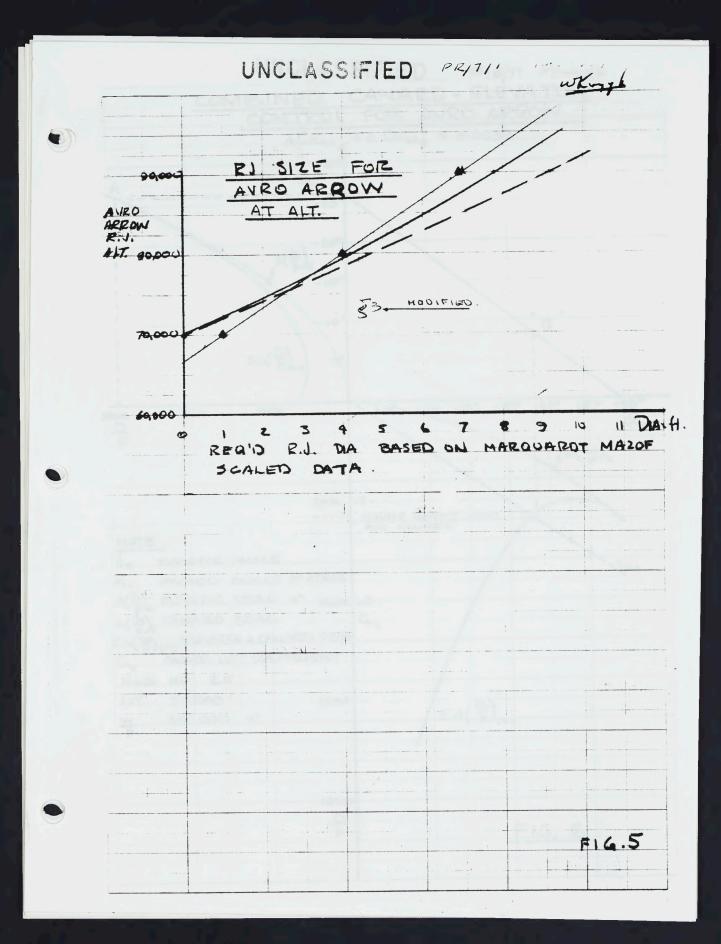

- 5 -

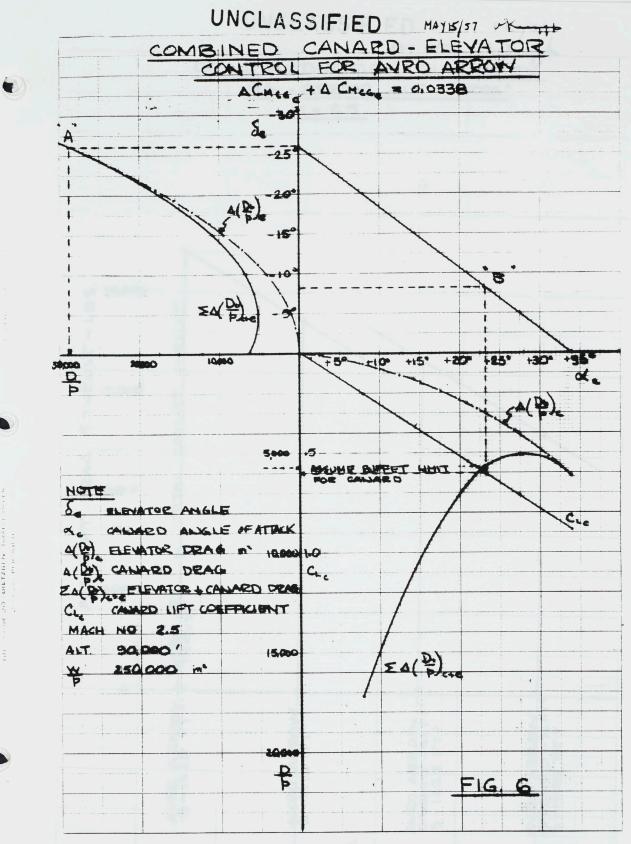
- (a) In the two inner stalls of the armament bay, thus removing $\frac{1}{2}$ of the armament.
- (b) In an extended portion of the nose section aft of the radar thus maintaining full armament.

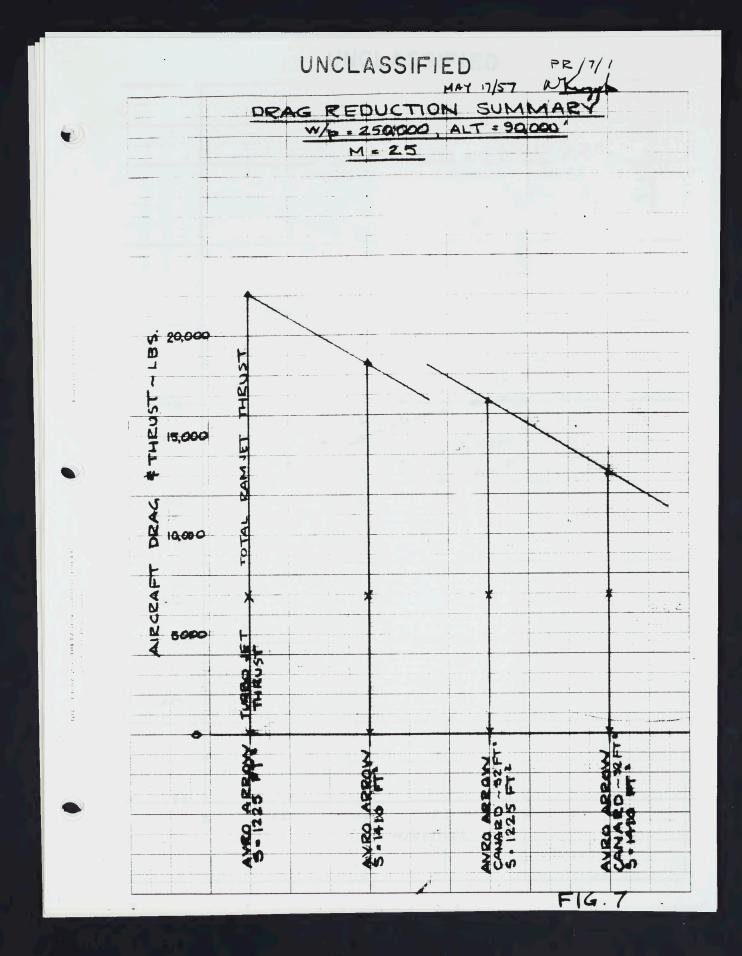
Further investigations are required to substantiate this Some of the more important items to be looked into more full lined in table 2.

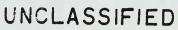


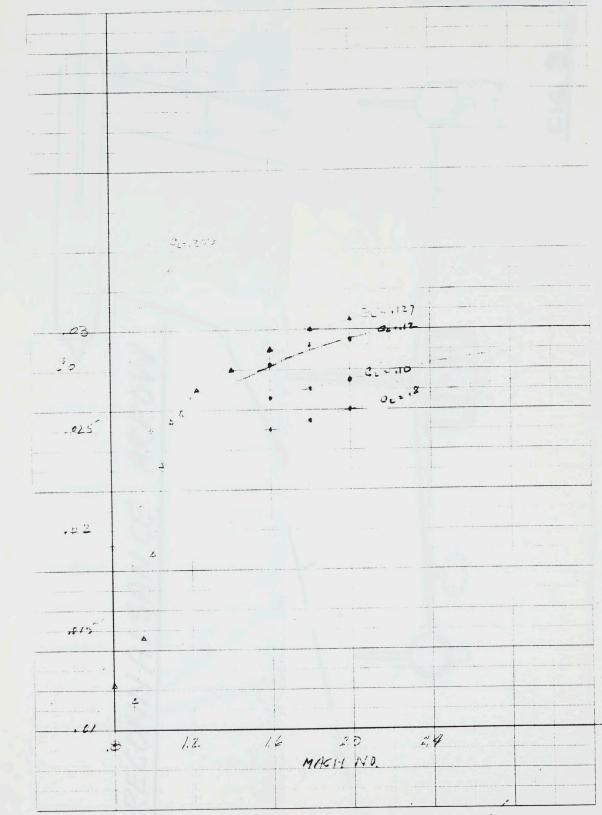

. . .



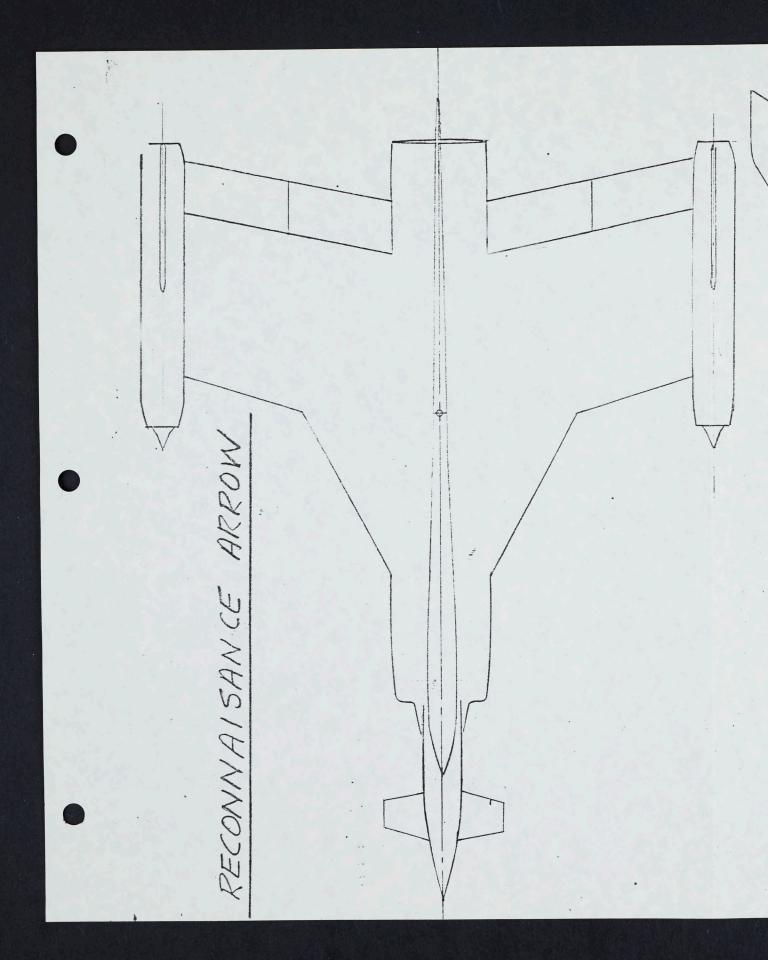


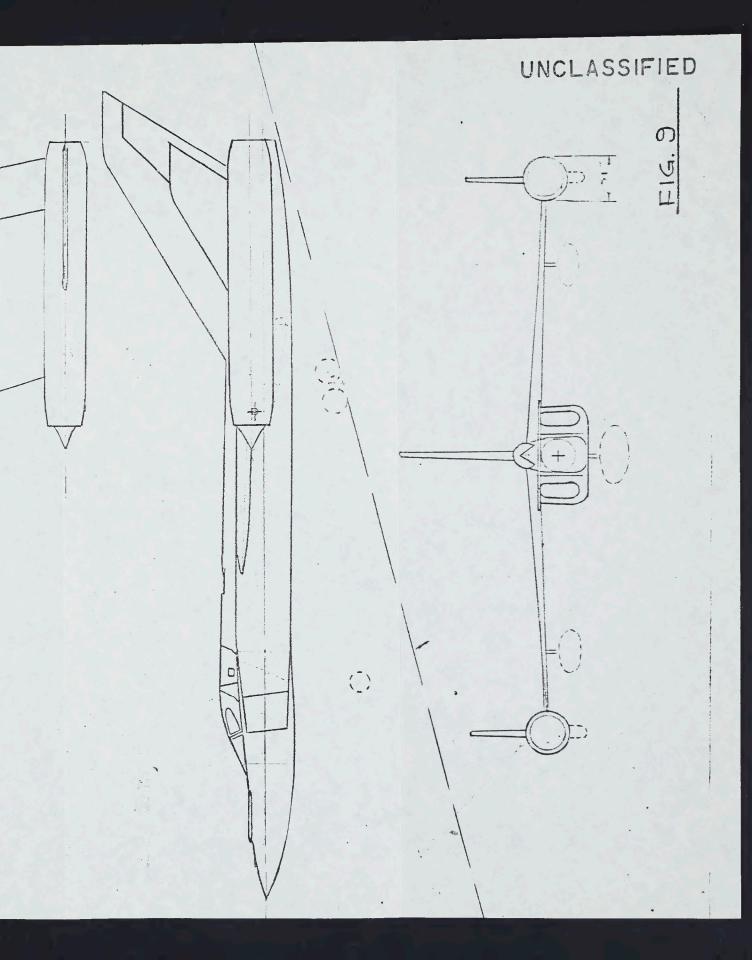


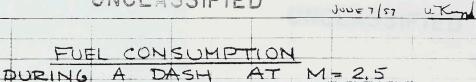




DIETZISI N







1

an ann an an an an Arthur an Ar

20

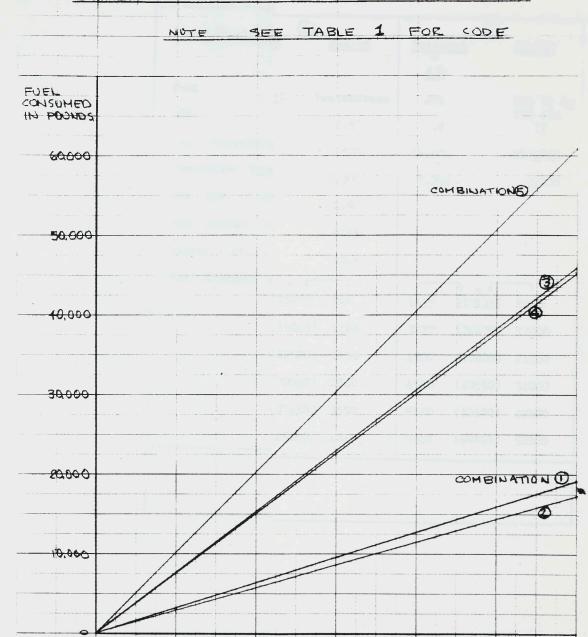

25

FIG. 10

30

15 .

\$0000 FT ALT + W/D= 250,000 IN2

•

10

PASH DURATION

5

..

Φ

TABLE 1

	1			1		
Power Plant Combination	Turbo	l)	Ranjet	Turboj	3 <u>et</u>	Ram
	<u>A/B</u>			+ B		
Fuel	JP4		JF4	JPL +	H ₂ 0	J:
SFC	2.8		3.15	8.42		3
Fuel Consumption 1b./hr.	19,60	0	12,900	81,700		10
Frogulaive Thrust 1b.	7,00	0	5,000	9,700		3
Max. Dia ft.			4.25			3.
Max. Frontal /rea - ft. ²			14.1			7.
Length - ft.			30			22
Fuel Consumed in Founds - 5 min.	1635		1575	6310	_• + √ (7670)	68
- 10 min.	3270	(6420)	3150	13620	(15340)	
- 15 min.	4900	(9620)	4720	20450	(23030)	25
- 20 min.	6550	(12850)	6300	27200	(30640)	34
25 min.	8170	(15050)	7880	34100	(38400)	43
- 30 min.	9810	(19260)	9450	40800	(45%0)	51
		<u> </u>			<u> </u>	-

Power Plant Summary 3 N 2.5, 90

NOTE: "Saturation" water injection considered in this tab

1 1

TABLE 1

Summary 3 M 2.5, 90,000' Alt., M/P = 250,000 in.²

1	3	Sale		2			4			0	
Turboj: +	et	Ramjet	Turbo	iet	Pamjet	Turbo	iet 4	Ramjet	Turbo	iet (5)	Pocket
<u> 4/B</u>			<u>A/B</u>			<u>A/B</u>			+ <u>A/B</u>		
JP4 + 1	H ₂ 0	JP4	JP4	Fe	entaborane	JP4 +	H20	Pentaborane	JP4		85% H2 02
ε.42		3.15	2.8		2.57	8.42	2	2.57	2.8		15% JP4 17
81,700		10,300	19,600)	15,430	81,70	00	2,500	19,600		102,000
9,700		3,300	7,000		á,000	9,70	0	3,300	7,000		5,000
		3.14			3.9			2.9			
		7.25	-		11.9			6.55			
		22	6		27.5			20.5			
6310	• + √ (7670)	860	1635	+ - (2923)	1288	6810	₹ + ↓ (7520)	710	1635	(10135)	8500
13620	(15340)	1720	3270	(5845)	2575	13620	(15040)	1420	3270	(20270)	17000
20450	(23030)	2580	4900	(8040)	3860	20450	(22580)	2130	4900	(30400)	25500
27200	(30640)	3440	6550	(11700)	5150	27,200	(30040)	2840	6550	(40550)	34000
34100	(38400)	4300	8170	(14610)	6440	34100	(37650)	3550	8170	(50670)	42500
40800	(45%0)	5160	9810	(17540)	7730	40900	(45160)		9810	(60810)	51000

sidered in this table.

TABLE 2

FURTHER INVESTIGATIONS OF RECONNAISSANCE ARPOW

Market Research	Possible Uses	Power Plant & Fuels	Range & Performance St
 To there a need for (1) Peconnaissance version with M 2.5 90,000' dash (2) Tactical Eomber with M 2.5 90,000' dash 	Reconnaissance Tactical Bomber Advanced Fighter	Turtojet + A/B Fanjet Focket Hybrid Mixed High Energy Fuels	Exact Range &
Suggest that Project Pesearch and Sales & Service investigate this together, and an effort be made to pro- duce a specification.	Suggest that Project Research conduct an operational research study into the use- fullness of such vehicles in the western air forces.	The state of art presently being investigated by Froject Research Group	Suggest this aspect be looked into by John Lucas of the Technical Office

. .

• .

2

CONNAISSANCE ARPOW

ge & Performance	Stability & Control	Flutter & Vibration	<u>Undercarriage</u>	Structure & Weight Est.
st Range & sion Analysis	Trim control of Canard, and effect of canard and incr- eased wing area on C.G. limits		Undercarriage Develorment 90,000 lb. T.O. Weight and 65,000 lb. landing weight	Weight estimate of Arrow
gest this aspect looked into by m Lucas of the chnical Office	Suggest this aspect be looked into by Stan Kwiatkowski of the Technical Office	Suggest this aspect be looked into by John McKillop	W. Alford of the Stress Office indi- cated an interest in this problem.	Suggest this aspect be looked into by Al Sen- tance of the Initial Froject Office.

